
1

CSE 3221.3 Operating System Fundamentals
Prof. Hui Jiang

Dept of Computer Science and Engineering

York University

No.8Memory Management (1) Memory Management
• A program usually resides on a disc as a binary exe cutable file.

• Program must be brought into memory and placed with in a
process for it to be executed.

• The program can be moved between disk and memory.

• In multiprogramming, we keep several programs in me mory

• Memory management algorithms:

– Contiguous Memory Allocation.

– Paging.

– Segmentation.

– Segmentation with paging

• Memory management needs hardware support – MMU.Background
• Physical memory consists of a large array of words or bytes, each

with its own address.

• In a typical instruction-execution cycle:

– CPU fetches an instruction from memory according to PC .

– The instruction is decoded.

– CPU may fetch operands from memory according to the address
in the instruction. (optional)

– CPU execute in registers

– CPU saves results into a memory addrss (optional)

• CPU generates address from instruction counter, pro gram
address,etc.

• CPU sends the address to a memory management unit (MMU), which
is hardware to actually locate the memory at certai n location.

– Memory mapping.

– Memory protection.

Memory-Management Unit (MMU)
• MMU: maps logical address to physical address.
• The user program deals with logical addresses; it never sees the

real physical addresses.
• A simple MMU scheme, the value in the relocation re gister is added

to every address generated by a user process at the time it is sent
to memory.

2

Logical vs. Physicaladdress space (1)
• Physical address : the address loaded into the memory-

address register to actually address the memory.

• Logical (virtual) address : an address generated by the
CPU and the address referred by user program; address
used in binary codes.

CPU

MMU

0346:
logical address

logical address

Physical
Memory

physical address
User

Program

Jump 0346

14346

logical address
space

physical address
Space

14398

Program Generation&Address
Re-locatable address:
e.g. 14 bytes from beginning

of module

Symbolic address:
e.g., count,i,j,etc

Logical address:
e.g. 4014, 1058, etc.

Physical addressAddress Binding: run-time
• To load a program into memory, we have to do addres s binding

when generating in-memory binary image.

• Address binding: binding the addresses in instructi ons and data to
physical memory addresses.

– In source programs: symbolic addresses (e.g., count, i, j, etc.)

– A compiler will bind each symbolic address to a rel ocatable
address (e.g. 14 bytes from the beginning of the mo dule)

– The linkage editor or loader will bind each relocat able address
to a logical address (e.g., 4014)

– In run-time, MMU will bind each logical address to a physical
address (e.g., 074014)

– The final physical address is used to locate memory .

• Most systems allow a user program to be loaded in a ny part of the
physical memory � address binding in run-time � completely separate physical address from logical a ddress

Logical vs. Physicaladdress space (2)
• Separating logical address from physical address:

– Requires hardware support – MMI does address
mapping dynamically.

• Why separating logical address from physical addres s?

– Consider two old methods …

3

Address Binding: compile-time
• In compiling, physical address is generated for eve ry

instruction.

• The compiler has to know where the process will
reside in memory.

• The code can not change location in memory unless i t
is re-compiled.

• No separation of logical and physical address space s.

• Example: .COM format in MS-DOS.

Address Binding: load-time
• The compiler generate relocatable code.

• When OS loading code to memory, physical address is
generated for every instruction in the program.

• Still no separation of logical and physical address
spaces

• The process can be loaded into different memory
locations.

• But once loaded, it can not move during execution.

Dynamical Loading
• Routine is not loaded until it is called

• Better memory-space utilization; unused routine is
never loaded.

• Useful when large amounts of code are needed to
handle infrequently occurring cases.

• No special support from the operating system is
required; Implemented through program design.

• Each program maintains an address table to indicate
which module is in memory and which is not.

Dynamical Linking
• Linking postponed until execution time.

• In dynamic linking, a stub, is included in the executable image for
each library-routine reference.

• Stub: used to locate the appropriate memory-resident li brary
routine or load the library of it is not in memory.

• Stub replaces itself with the address of the routin e, and executes
the routine.

• Operating system needed to check if the routine is in other
processes’ memory address, and allow multiple proces ses to
access the same memory space

• Dynamical linking is useful for shared libraries.

4

An example: regular linking & loading
mainA.c

subA.c

libm.a

mainB.c

subB.c

Compiling

mainA.o

subA.o

mainB.o

subB.o

Linking

mainA

subA

libm

Program A

MemoryLoading

mainB

subB

libm

Program B

mainA

subA

libm

mainB

subB

libm

Kernel

An example: Dynamic loading
mainA.c

subA.c

libm.a

mainB.c

subB.c

Compiling

mainA.o

subA.o

mainB.o

subB.o

Program A

MemoryRelocatable
Linking Loader

Program B

Kernel

mainA

subA

libm

mainB

subB

libm

Duplicated

An example: Dynamic linking
mainA.c

subA.c

libm.a

mainB.c

subB.c

Compiling

mainA.o
(stubs)

subA.o

mainB.o
(stubs)

subB.o

Program A

MemoryRelocatable
Linking Loader

Program B

Kernel

mainA

Stub for sub

Stub for lib

subA

libm

mainB

Stub for sub

Stub for lib

subB

reference

libm

Memory Management Approaches
• Contiguous Memory Allocation

• Paging

• Segmentation

• Segmentation with paging

5

Contiguous Memory Allocation
• Every process is allocated to a single contiguous s ection of memory

OS

process 1

process 2

process 3

OS

process 1

process 3

OS

process 1

process 3

OS

process 1

process 4

process 3

process 4

process 5

Memory Protection
• Two registers:

– Limit register: the range of logical address

– Relocation register: starting position of physical memory

• In context switch, the dispatcher load both registe rs with correct
values.

• Every memory access is checked by MMU hardware as:

Memory Allocation
• OS must keep the information on which parts of memo ry are

available and which are occupied.

• Hole: block of available memory

– holes of various size are scattered throughout memor y

• When a process arrives, it is allocated memory from a hole
large enough to accommodate it.

• Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

– One way is to use linked list:

Free Memory

start

size

next

start

size

next

start

size

next

start

size

next

start

size

next

start

size

next

Dynamic Storage-Allocation Problem
• First-fit: Allocate the first hole that is big enough.

• Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size. Produces
the smallest leftover hole.

• Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes
that have various size.

1. First-fit and best-fit better than worst-fit in t erms of
speed and storage utilization.

2. First-fit is faster than best-fit.

6

Contiguous Memory Allocation:External Fragmentation
• External fragmentation – total memory space exists t o satisfy a

request, but it is not contiguous.

• Contiguous memory allocation suffers serious extern al
fragmentation; Free memory is quickly broken into l ittle pieces.

– 50-percent rule for first fit (1/3 is wasted)

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory to gether in
one large block.

– Compaction is possible only if relocation is dynamic, and is
done at execution time.

– Compaction is very costly

• Reduce external fragmentation by better memory mana gement
methods:

– Paging

– Segmentation

Contiguous Memory Allocation:Expanding memory
• How to allocate more memory to an existing

process?

– Move-and-Copy may be needed.

